Description
Welcome to Deployment of Machine Learning Models, the most comprehensive machine learning deployments online course available to date. This course will show you how to take your machine learning models from the research environment to a fully integrated production environment.
What is model deployment?
Deployment of machine learning models, or simply, putting models into production, means making your models available to other systems within the organization or the web, so that they can receive data and return their predictions. Through the deployment of machine learning models, you can begin to take full advantage of the model you built.
Who is this course for?
- If you’ve just built your first machine learning models and would like to know how to take them to production or deploy them into an API,
- If you deployed a few models within your organization and would like to learn more about best practices on model deployment,
- If you are an avid software developer who would like to step into deployment of fully integrated machine learning pipelines,
this course will show you how.
What will you learn?
We’ll take you step-by-step through engaging video tutorials and teach you everything you need to know to start creating a model in the research environment, and then transform the Jupyter notebooks into production code, package the code and deploy to an API, and add continuous integration and continuous delivery. We will discuss the concept of reproducibility, why it matters, and how to maximize reproducibility during deployment, through versioning, code repositories and the use of docker. And we will also discuss the tools and platforms available to deploy machine learning models.